Strong Optomechanical Interaction in Hybrid Plasmonic-Photonic Crystal Nanocavities with Surface Acoustic Waves

نویسندگان

  • Tzy-Rong Lin
  • Chiang-Hsin Lin
  • Jin-Chen Hsu
چکیده

We propose dynamic modulation of a hybrid plasmonic-photonic crystal nanocavity using monochromatic coherent acoustic phonons formed by ultrahigh-frequency surface acoustic waves (SAWs) to achieve strong optomechanical interaction. The crystal nanocavity used in this study consisted of a defective photonic crystal beam coupled to a metal surface with a nanoscale air gap in between and provided hybridization of a highly confined plasmonic-photonic mode with a high quality factor and deep subwavelength mode volume. Efficient photon-phonon interaction occurs in the air gap through the SAW perturbation of the metal surface, strongly coupling the optical and acoustic frequencies. As a result, a large modulation bandwidth and optical resonance wavelength shift for the crystal nanocavity are demonstrated at telecommunication wavelengths. The proposed SAW-based modulation within the hybrid plasmonic-photonic crystal nanocavities beyond the diffraction limit provides opportunities for various applications in enhanced sound-light interaction and fast coherent acoustic control of optomechanical devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid photonic-plasmonic crystal nanocavities.

We propose a hybrid optical nanocavity consisting of photonic crystals coupled to a metal surface with a nanoscale air gap between. The hybridization of photonic crystal modes and surface plasmons across the gap forms hybrid cavity modes, which are highly confined in the low-loss air gap region. Deep subwavelength mode volume and high quality factor are demonstrated at telecommunication wavelen...

متن کامل

From vertical-cavities to hybrid metal/photonic-crystal nanocavities: towards high-efficiency nanolasers

We provide a numerical study showing that a bottom reflector is indispensable to achieve unidirectional emission from a photonic-crystal (PhC) nanolaser. First, we study a PhC slab nanocavity suspended over a flat mirror formed by a dielectric or metal substrate. We find that the laser’s vertical emission can be enhanced by more than a factor of 6 compared with the device in the absence of them...

متن کامل

High Quality Factor Metallodielectric Hybrid Plasmonic-Photonic Crystals

A 2D polystyrene colloidal crystal self-assembled on a flat gold surface supports multiple photonic and plasmonic propagating resonance modes. For both classes of modes, the quality factors can exceed 100, higher than the quality factor of surface plasmons (SP) at a polymer–gold interface. The spatial energy distribution of those resonance modes are carefully studied by measuring the optical re...

متن کامل

Photonic Crystal Hydrogel Enhanced Plasmonic Staining for Multiplexed Protein Analysis.

Plasmonic nanoparticles are commonly used as optical transducers in sensing applications. The optical signals resulting from the interaction of analytes and plamsonic nanoparticles are influenced by surrounding physical structures where the nanoparticles are located. This paper proposes inverse opal photonic crystal hydrogel as 3D structure to improve Raman signals from plasmonic staining. By h...

متن کامل

Plasmonic Nanocavities-based Aperiodic crystal for Protein-Protein Recognition SERS sensors

The revelation of protein-protein interactions is one of the main preoccupations in the eld of proteomics. Nanoplasmonics has emerged as an attractive surface-based technique because of its ability to sense protein binding under physiological conditions in a label-free manner. Here, we present a detailed experimental study of the use of aperiodic photonic nanocavities for plasmonic Surface Enha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015